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Abstract. A number of investigations into the formation and developmentof turbulent spots in plane Poiseuille, 
plane Couette and watertable flows are reviewed. Three main observations are drawn from this work. Firstly, the 
initial development is associated with the transient growth due to the three-dimensional lift-up effect. Secondly, the 
spreading and propagation velocities of the different spots are quite similar. Thirdly, the velocity field inside the 
spots show essentially all the characteristics of fully developed turbulent flow, albeit at low Reynolds numbers. The 
mechanism behind the rapid spreading of the spots, however, is not yet fully understood, although observations of 
wave activity, modifications of the surrounding flow field and stability calculations point in the direction of growth 
by destabilization. 

1. Introduction 

Transition to turbulence in wall-bounded shear flows follows essentially two different routes. 
The first, which we may call the secondary instability scenario, starts out with exponentially 
growing two-dimensional waves which subsequently become three-dimensional as a result of 
the secondary instability of the finite amplitude two-dimensional waves. The three-dimen- 
sional disturbances rapidly evolve into an array of A-vortices which in turn break down to 
turbulence. The classical experiments of Klebanoff et al. [1] clearly illustrates this scenario 
and the review article by Herbert [2] gives a theoretical background. 

The second route to turbulence, which we along with Morkovin [3] call the bypass 
transition scenario, is not as well understood. This scenario is typically associated with large 
amplitude localized disturbances which quickly develop streaky structures, shear layers and 
strong vortices. The two-dimensional waves and their secondary instability is bypassed in this 
case. Growth of localized disturbances and their subsequent breakdown to turbulent spots 
are prominent features in natural transition to turbulence. Flow perturbations are then likely 
to be emanating from free-stream turbulence and/or spatially localized effects such as 
surface irregularities. The study of transition from localized disturbances has gained 
increased attention in recent years. 

The first observations of turbulent spots were made by Emmons [4] in a water table flow, 
i.e. a flow of a thin water layer over an inclined plate. Turbulent spots have been studied 
extensively in the boundary layer geometry, see for example the review article by Riley and 
Gad-el-Hak [5]. For channel flows, however, the information has not until recently been as 
substantial. The present review concerns the formation and characteristics of spots in 
channel flows, i.e. in plane Poiseuille flow, water table flow and plane Couette flow. In all 
cases the situation is one of subcritical transition. In fact, plane Couette flow is linearly stable 
for all Reynolds numbers. Turbulent spots in plane Poiseuille flow were first studied by 
Carlson et al. [6], whereas the first studies of spots in plane Couette flow are the numerical 
and physical experiments of Lundbladh and Johansson [7] and Tillmark and Alfredsson [8], 
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respectively. In this review attention is also paid to the early formation stages and their 
underlying mechanisms. 

2. Spot formation 

2.1. Experimental findings 

The experimental findings regarding the initial development of localized disturbances and 
incipient spots have to a large extent been carried out in the boundary layer geometry. As a 
motivation for the following theoretical discussion as well as for the work on channel flow 
disturbances, we start with a short description of some of the boundary layer results. 

Amini and Lespinard [9] studied an incipient spot and found that streaks developed close 
to the wall. The streaks moved much faster than the wavepacket studied by Gaster and 
Grant [10]. Similar results were found by Chambers and Thomas [11] who also studied the 
breakdown of localized disturbances. They found that the disturbance consisted of both a 
wavepacket and a faster moving streaky part and that the turbulent breakdown was 
associated with the streaks rather than the wavepacket. They concluded that the wavepacket 
played a passive role in the transition process. 

The breakdown process of the streaks was studied by Acarlar and Smith [12] who 
generated a disturbance by fluid injection. They found that the injected fluid caused 
streamwise streaks which subsequently formed strong vortices. In their investigation the 
interaction between the heads of the vortices and the stretched out legs of nearby vortices 
caused the final breakdown to turbulence. Similar strong vortices are found to develop 
during the secondary instability process, where they are also found to play an important role 
during late transitional and early turbulent flow (see e.g. Sandham and Kleiser [13]). 

Breuer and Haritonidis [14] studied the evolution of weak disturbances created by a 
localized motion of the wall. They found both a dispersive wavepacket and a faster moving 
streaky transient part. The transient part was also associated with a sharp shear layer in the 
centre of the disturbance. In their experiments the transients were not strong enough to 
cause transition but died away leaving a slowly growing wave packet. 

By limiting the amplitude of the initial disturbance it is also possible for the breakdown of 
a localized disturbance to be associated with the growth of the wavepacket. Cohen et al. [15] 
showed that when the waves in the wavepacket have grown to large enough amplitude they 
experience a Craik type resonance, a non-linear spread of energy into higher wavenumber 
components and a subsequent breakdown into a turbulent spot. 

Thus wavepackets and streaks have both been observed in the initial development of 
localized disturbances. We will now consider the initial value problem for disturbances in 
parallel shear flows in order to illustrate the theoretical basis for these findings. 

2.2. The initial value problem for localized disturbances 

The equations for a localized disturbance on a base flow U~ satisfying the incompressible 
Navier-Stokes equations, can in tensor form be written, 

OU i OU i OU i Op 1 ~ j  
o--i- + uj-5- x + Uj- xj + oxi R e V : U i -  - (u,uj) , (la) 
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~u i 
Ox i = 0 ,  ( lb )  

where  (ul,Uz, U3) = (u, o, w) are the disturbance velocities in the streamwise (Xl = x ) ,  
normal  (x 2 = y) and spanwise (x 3 = z) directions and p is the pressure. All quantities are 

made  non-dimensional  with a reference velocity (Urn) and the characteristic length (h), 
making Re  = Umh/v. For  plane Poiseuille flow Um is the centreline velocity, for water  table 
flow it is the free surface velocity and for Couet te  flow it is half of the velocity difference 
be tween the walls. The reference length h is taken as the channel half-height for Poiseuille 
and Couet te  flow and as the total depth of the fluid in the water  table case. 

In order  to determine the growth mechanisms possible for the disturbance it is of interest 
to consider the equat ion for the total energy of the perturbation.  It can be derived by 
multiplying ( la )  with u i and integrating over  a volume containing the complete  disturbance. 

The  resulting so called R e y n o l d s - O r r  equation can be written 

dEr fv OU~ 1 ( Ou_._L ~ Ou_j. 
d ~ -  uiuj--~j d V - - R e  Jv Oxj Oxi dV '  (2) 

where  E r = �89 Sv uiui dV. Note that the nonlinear terms on the right hand side of equat ion 
( l a ) ,  along with a number  of  the linear terms, have dropped out,  which is the case as long as 
the disturbance vanish on the boundaries or  for periodic boundary conditions 2. The  
R e y n o l d s - O r r  equat ion shows that the relative change of the total energy is independent  of  
the ampli tude,  i.e. at every instant the quantity (1/Er)(dEr/dt) is unaffected by a rescaling 
of the amplitude.  Hence,  if all infinitesimal disturbances exhibit monotonical  decay of the 
total energy this will also be the case for all finite ampli tude disturbances. Conversely,  if any 
finite ampli tude disturbance exhibit total energy growth there must exist an instantaneously 
growing infinitesimal disturbance. We may formulate  this important  conclusion as follows: 

The  total energy of a localized disturbance of arbitrary ampli tude cannot grow without the 
existence of a linear growth mechanism. 

The  Reynolds number  below which no growth is possible (dE/dt < 0) will be denoted Reg 
and the Reynolds number  above which the linearized problem supports  exponentially 
growing solutions will be called Re c. The Reynolds number  for which turbulent spots can 

first appear  will be denoted Re r 
Table  1 shows the values of  these critical Reynolds numbers  for the flows of interest here. 

It  is evident that transition is usually subcritical, i.e. occurs for Reynolds numbers  below 

Table I. Critical Reynolds numbers for some parallel shear flows. From top to bottom the values for Reg are found 
by Joseph and Carmi [16] and Joseph [17], the values of Re, by Alavyoon et al. [18], Lundbladh and Johansson [7], 
Tillmark and Alfredsson [8] and Gustavsson and Ogren [19] and the values of Re c by Orszag [20], Herron [21] and 
Chin [22]. 

Flow Reg Re, Re c 

Poiseuille 49.6 1100 5772 
Couette 20.7 360 
Water table - 1100 ~5700" 

* Depends slightly on a surface tension related parameter. 
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Re c, and is thus dependent  on some other l inear  growth mechanism than exponentially 
growing normal modes. 

We turn to the linearized version of ( la)  written in a form suitable for the parallel channel 
flow problems in order  to describe such a linear mechanism. In parallel shear flows 
U i = U(y)6ai .  If the equations are horizontally Fourier transformed they can be reduced into 
one equation governing the normal velocity (6) and one for the normal vorticity (r = i /3fi-  
iotff), where ot and /3 are the streamwise and spanwise wavenumber components and the 
caret signifies a Fourier transformed quantity. Introducing the vector q=( t3 ,  ~})r the 
governing equations can be written 

o. Ol) o) 
- f f  = ~ e q ,  ~ = , ~e = \ i / 3 u '  ~ s e  ' (3)  

where 

~ o s  = - i a U (  D 2  - k2) + i aU"  + (D 2 - k2)2 /Re ,  (4a) 

~LPsQ = i a U  - (D 2 - k Z ) / R e  . (4b) 

Here  ' and D denotes a derivative with respect to y and k 2 = a 2 +/32.  The solution to (3) 
can be written formally as 

q = ~ K ~ .  e -i'~ , (5) 
n = 1  

where qn and % are the eigenfunctions and eigenvectors of i~-12e ,  respectively. They 
consist of both Orr -Sommerfe ld  and Squire modes. K, are the coefficients in the eigenfunc- 
tion expansion of the initial condition 90. 

The energy density of the disturbance for a specific Fourier component  can be written as 
(see Gustavsson [231) 

1 fy2 
E(t) =-~--~ jr, (kZl~l ~ + t~'l z + I~1 z) d y ,  (6) 

where the total energy E r is recovered if the above expression is integrated over a and/3.  
The  maximum growth possible for any given time G(t)  can be expressed 

E ( t )  
G ( t )  = max . (7) 

e(o)~o E(0) 

The  growth function G( t )  can most easily be calculated if one projects the solution on the 
space spanned by the first N eigenfunctions of i ~  -1~.  The procedure is described in Reddy 
and Henningson [24]. 

The typical behaviour of G( t )  for flows allowing subcritical instability can be seen in Fig. 1, 
where the growth function has been calculated for a supercritical (Re = 8000) and a 
subcritical (Re = 5000) Reynolds number in the Poiseuille flow case. For Re = 8000 the 
effect of the least stable eigenmode on the maximum growth envelope can be seen in the 
exponential  behaviour for large times. Before that, however,  large transient growth can be 
seen. For  the subcritical case only the transient part of the growth remains whereas the 
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asymptot ic  exponential  growth has turned to decay. It  is clear that the transient growth 
depends  on cancellation of nearly linearly dependent  eigenmodes since each mode  in the 

eigenfunction expansion (5) decays for Re --- 5000. If  all the initial energy is introduced only 
into the growing mode  (Re  = 8000) the lower curve is obtained. Thus even when linearly 
unstable modes exist it is of interest to examine the transient behaviour  when the likelihood 
of transition is assessed. 

The  qualitative behaviour  seen in Fig. 1 is also present  for other pa ramete r  values, 
al though the transient growth may be much larger than seen here. As we will see below, it is 
disturbances with no streamwise dependence (a = 0) which grow most  rapidly (see also 
Butler  and Farrell [25]). From the argument  above about  the necessity of a linear growth 
mechanism for subcritical growth of arbitrary ampli tude perturbat ions,  it is clear that the 
transient growth will persist down to Re = Reg. Thus it is this possibility for growth in the 
total  disturbance energy which has to be exploited if subcritical transition is to occur. 

The  two possible growth mechanisms (modal and transient) give two types of  behaviour  
for typical localized disturbances. The former  results in the wavepacket  type behaviour  
calculated by Gaster  [26, 27]. This assumes that the transient phase has decayed and that 

- i ~ o l t  only the least stable mode  is important  in the development ,  i.e. d = xlv I e . The solution 
in physical space can then be written 

1LL z 
v = 4r 2 6 (y ;  a ,  f l )  e '~ da  d/3 0 = O t  "~- "~ ~ 7 - -  r t .  (8) 
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Fig. 1. Plot of G(t) for stable and unstable Poiseuille flow. The stable case corresponds to a 1, r = 0, Re = 5000 
and the unstable case to a = 1,/3 = 0, Re = 8000. The curve labeled modal is a plot of the energy growth in the case 
that the initial velocity is the eigenfunction corresponding to the unstable eigenvalue for a = 1, /3 = 0, Re = 8000. 
From Reddy and Henningson [24]. 
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The inversion integrals can be calculated using the method of steepest descent and the 
solution shows the typical dispersive behaviour associated with a wavepacket. For the 
wavepacket the normal vorticity behaves in the same manner as the normal velocity. 

In the transient part the main contribution to the growth comes from the normal vorticity 
(see e.g. Gustavsson [28]). The physical mechanism is vortex tilting of mean spanwise 
vorticity into normal vorticity by the normal velocity. This localized liftup is represented by 
the off-diagonal term in the matrix operator 5r It can be shown that this effect is largest for 
wavenumber components with a = 0. Henningson et al. [29] shows that one may obtain the 
following result 

N 

Z - -i~ = K.r/. e . . . . .  (r - i~U'Oot)[1 + O(t/R)].  (9) 
n = l  

We have here assumed that a = 0. This shows that the transient growth is connected to the 
algebraic instability discussed by Ellingsen and Palm [30] and Landahl [31]. They showed 
that inviscid disturbances grow algebraically without limit when wavenumbers along the 
/3-axis are excited. This behaviour results in disturbances which are continuously stretched in 
the streamwise direction causing sharp shear layers which are damped on a viscous time 
scale. 

2.3. Transient effects in channel flows 

The transient effects described above are particularly important in channel flow transition 
since it is usually subcritical, see Table 1. We will here describe results from some recent 
investigations. 

Henningson [32] studied the inviscid evolution of an infinitesimal localized disturbance in a 
piecewise linear approximation of Poiseuille flow. He found that the disturbance could be 
divided into one dispersive part, comprising the spreading of waves and one convective part, 
characterized by an advection of the disturbance with the local mean velocity. In a particular 
initial disturbance the advected part was found to be associated with a shear layer which did 
not decay but remained as a 'permanent scar' as predicted by Landahl [33]. These results are 
the same as those predicted for the boundary layer case (Gustavsson [34]). 

Henningson et al. [35] and Henningson et al. [29] calculated the viscous development of 
localized disturbances and found that the transient growth increased dramatically with 
increasing amount of energy in low streamwise wavenumbers, as predicted by the theory 
presented above. The details of the dependence of finite amplitude growth on the linear 
mechanism was studied, and two main cases could be distinguished. Firstly, if the initial 
disturbance contained energy along the spanwise wavenumber axis, the amplitude of those 
wavenumbers grew rapidly due to the linear mechanism. Higher spanwise modes were also 
rapidly excited. Secondly, if the initial energy density along the spanwise wavenumber axis 
was low or vanishing, rapid growth of those Fourier components still occurred as soon as 
non-linear interactions had transferred energy to that area in wavenumber space. Thus the 
detailed dependence on the initial condition became largely eliminated. Henningson et al. 
[29] also made high resolution calculations valid all the way to the turbulent spot stage. It 
was found that the streaks containing normal vorticity were converted to strong vortices 
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tilted toward the streamwise direction. The spot stage was initiated by strong spikes in the 
normal velocity appearing on the streamwise vortices. 

A typical disturbance development is seen in Fig. 2, taken from Henningson et al. [29]. 
The first four frames shows the early non-linear development prior to breakdown, whereas in 
the last frame a small turbulent spot has appeared. Figure 2a shows both the wavepacket and 
the much stronger streaks. It is indeed the streaks which break down to form the spot, while 
the wavepacket quickly is damped out in this linearly stable flow. 

Klingmann [36] studied the development of localized disturbances experimentally in an air 
channel. She found three stages of development. A first rapid nonlinear redistribution stage 
where the smallest scales in the initially strong disturbance was damped out. A second stage 
which was essentially described by linear theory where streaky structures developed and a 
third breakdown stage where spikes formed and the disturbance became turbulent. The 
development found in the experiment and the high resolution calculations made in 
Henningson et al. [29] show close agreement. Klingmann also measured the spanwise wave- 
number associated with the streaks. She found fairly broad peaks. This is well in accordance 
with the theoretical results which show that a broad range of spanwise wavenumbers 
experience rapid transient growth. The particular spanwise wavenumber peaks seen in an 
experiment or simulation depends significantly on the initial condition. 

3. Growth of turbulent spots in channel flows 

The overall characteristics of turbulent spots are their shape, propagation speeds and 
spreading rate. These characteristics depend on the basic flow but also on the Reynolds 
number, how far from the origin of spot formation the spot is observed and to some extent 
the initial disturbance. The spot affects the surrounding laminar flow in two ways. Firstly, it 
acts as a local blockage due to the higher wall shear inside the spot, thereby displacing the 
surrounding flow. Secondly, it radiates disturbances into the laminar flow. 

In all channel flows (see Table 1) the transitional Reynolds number, Re t, is smaller than 
the critical Reynolds number for growth of infinitesimal two-dimensional disturbances, Re c. 
Natural formation of spots in these flows occurs due to background disturbances in the mean 
flow or surface roughness. In experiments a controlled disturbance, in the form of an 
injected pulse of fluid or in the case of water table flow a small drop of fluid hitting the free 
water surface, is usually used. This gives a space and time reference to the origin of the spot. 
Although the initial disturbances may be of different strength and size it is commonly 
believed that the asymptotic behaviour of the spot is independent of the initial disturbance, 
although its virtual origin may not coincide with the point of the disturbance. The streamwise 
propagation velocity of the front of the spot is usually higher than for the rear laminar- 
turbulent interface, so that the spot length increases as it travels downstream. 

One important feature of turbulent spots is the rapid spanwise spreading into the 
surrounding laminar flow, much larger than what could be accounted for by turbulent 
diffusion. Typical half spreading angles are of the order of 10 ~ whereas turbulent diffusion 
normal to the wall in a turbulent boundary layer is around 1 ~ There is some evidence that 
the spot itself destabilizes the laminar flow surrounding it, and Gad-el-Hak, Blackwelder and 
Riley [37] named this 'growth by destabilization'. Several attempts to elucidate the 
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mechanism behind the spreading has been advanced, some of which will be discussed below 
together with descriptions of the spot characteristics. 

3.1. Water table flows 

The first observation of turbulent spots were made by Emmons [4] in a water table flow. His 
observations established a qualitative picture of laminar-turbulent transition in channel 
flows, through disturbances that give rise to localized breakdown and formation of spots. In 
Emmons' experiment the spots were observed through the irregular surface waves created by 
the turbulence within the spot. Aside from the general shape of the spot, Emmons also 
noted that its propagation velocity was smaller than the maximum velocity of the flow and 
that its spanwise size increased linearly with downstream distance. Mitchner [38] continued 
Emmons work and reported a spreading rate of 6.6 ~ for Re = 1230, and propagation speeds, 
0.54 and 0.61 for the rear and forward parts of the turbulent region. Mitchner pointed out 
that the rear part of the spot was well defined whereas the downstream edge was more vague 
and that the shape of the spot was an isosceles triangle with its vertex pointing upstream. 
Mitchner also made measurements of artificially triggered spots in a laminar boundary layer 
and noted that they have an arrowhead shape pointing in the downstream direction in 
contrast to the water table spot. 

Bertshy and Abernathy [39] presented photographs of water-table spots. They also showed 
that drag reducing polymers inhibit the spot growth. Gustavsson and Ogren [19] presented 
both photographs and measurement data of overall characteristics. The photographs were 
taken with a novel technique in which a photographic paper was placed below the water 
table glass surface (the room was dark) and a flash light was activated a certain time after the 
spot was triggered by a falling droplet. The photographs reflect the perturbations of the free 
surface, and showed a boomerang-like shape of the turbulent region. They presented data 
for three Re (1110, 1360 and 1910) that showed that the spreading angle increased with Re 
(becoming 7.6 ~ at the highest Re) and that the propagation velocities were about 0.58 and 
0.63, respectively. Gustavsson and Ogren also showed that at low Reynolds numbers the 
spot may grow asymmetrically, i.e. growth on one side may be larger than on the other. 

Lindberg et al. [40] also used a water table but made the flow visualization with reflective 
flakes suspended in the water in order to obtain a more complete picture of the spot 
development. Some flow structures that were unnoticed in the previous studies were now 
revealed. For instance, the newly formed spot had an appearance very similar to that 
observed by Mitchner in a boundary layer flow. As the spot travelled downstream, however, 
the turbulence in the front part dies away, leaving at first a streamwise-oriented streaky 
pattern of small spanwise wave length, in front of the turbulent region. Lindberg et al. also 
showed that the spreading angle increases with Reynolds number for low Re. Above 
Re = 1500 the spreading angle was constant and in the range 8-9 ~ depending slightly on the 
inclination angle of the water table. They also carried out hot-film measurement which 
showed that the streamwise velocity profile in the laminar flow outside the wing-tip region is 
modified, and OS-calculations showed that the flow to some extent was destabilized. 

3.2. Plane Poiseuille flow 

In most plane Poiseuille flow experiments, transition to turbulence is usually found at 
Reynolds numbers between 1000 and 3000. The first flow visualization experiments that 
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revealed turbulent spots were made by Carlson et al. [6]. They used reflective flakes and 
presented detailed flow visualization photographs of spots at Reynolds numbers just above 
the transitional. These spots have an appearance slightly different from that of water-table 
spots, but are similar in the respect that the small scale turbulence is located in the rear part. 
However in front of this region, as well as outside the wingtips of the spot they observed 
wave packets of inclined waves with a wave length of the order of a few channel heights. The 
oblique waves at the wing-tips of the spots were observed to break down and this was 
assumed to be coupled to the spanwise spreading of the spot. Further downstream the 
photographs show that the central part of the spot seems to relaminarize, whereas the 
turbulence at the wing-tips is sustained. Hence, at Re ~ Re t the spot may split into two parts 
separated by a region of streaky structures. 

Further flow visualization studies in plane Poiseuille flow were made by Alavyoon et al. 
[18]. They presented results that confirmed the results of Carlson et al. regarding the spot 
structure at low Reynolds numbers but showed that the splitting of the spot into two 
turbulent regions is a phenomenon occurring only at Reynolds numbers close to the 
transitional. The flow apparatus used by Alavyoon et al. also made it possible to obtain 
higher Re without obtaining natural transition. Results were presented that showed 
Reynolds number trends of spreading angle and propagation speeds (see Fig. 3a,b). The 
spreading angle was found to increase linearly with Re, from about 6 ~ at Re = 1100 to about 
12 ~ at Re = 2200. The propagation speed of the rear interface shows a decreasing trend, 
whereas the front speed increases slightly for this Reynolds number range. 

In the flow visualization studies mentioned above the spot shape is observed as a boundary 
between laminar and turbulent flow. The flow visualization method gives no information on 
the cross-channel variation. In the hot-wire measurements of Klingmann and Alfredsson 
[42], contour plots in the x-z-plane of the ensemble averaged streamwise velocity as well as 
the corresponding rms values were shown for various y-positions. The ensemble averaged 
mean velocity defines the spot shape and the rms gives the region of turbulent activity. The 
results shows that the cross-channel shape variation of the interface has an arrowhead shape 
with the largest extent on the channel centreline. Close to the wall both the width and the 
length are decreased. Turbulent activity is seen in the rear and central parts of the spot, 
indicating that the disturbances in the front part of the spot is passively convected 
downstream. 

Velocity measurements of the flow field outside the wing-tip was carried out by Henning- 
son and Alfredsson [43] with hot-film anemometry and it was shown that the waves observed 
in flow visualization appeared as regular wave-packets with a distinct frequency. It was 
shown that the streamwise velocity signal associated with the wave was antisymmetric with 
respect to the channel centreline (y = 0) which is in accordance with the behaviour of the 
least stable TS-waves in Poiseuille flow (see Fig. 4). Klingmann and Alfredsson [42] further 
investigated the waves and were able to show that they could be observed also within the 
turbulent wing-tip region where the streamwise velocity associated with the waves reached 
peak-to-peak amplitudes of 0.20Uct. 

The hot-film measurements also showed that the mean flow around the spot is altered and 
that the flow tends to move around the spot, indicating that the spot acts as a flow blockage. 
Henningson and Alfredsson [43] analyzed the stability of the resulting flow field at Re = 1500 
for an oblique wave, using the Orr-Sommerfeld equation (see Eq. 3) with an effective 
velocity profile of the form 

U + W tan d~ 
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where th is the angle between the wave vector and the x-direction. This may give rise to 
'cross-flow' inflectional profiles which could lead to rapid exponential growth. By using the 
measured velocity field and assuming a quasi-stationary velocity profile they showed that for 
the observed wave angles the mean flow outside the wing-tip of the spot was indeed unstable 
at Re = 1500, however the growth rate was too small to explain the experimentally 
determined rapid growth of the waves. 

A full numerical simulation at Re = 1500 was reported by Henningson, Spalart and Kim 
[41] (see also Henningson and Kim [44]). The simulation showed in general good agreement 
with the experiments of Alavyoon et al. [18]. The propagation speed of the rear and front 
parts of the turbulent region agreed with experiments, whereas the spreading rate was 
somewhat too large. This may have been caused by interaction with neighbouring spots 
resulting from the periodic boundary conditions imposed in the simulation. The typical 
Poiseuille spot behaviour was observed where the front was relaminarized and the 
turbulence was maintained in the rearward part of the spot. Also the waves at the wingtips 
were reproduced in the simulation (see Fig. 5). 

Henningson [45] analyzed the growth of the TS-waves outside the wing-tip further, now 
using the numerical data base of the spot simulation. The analysis was based on kinematic 
wave theory where waves are traced along group velocity rays. In this manner wave energy 
focusing resulting from the slowly varying mean flow outside the spot could also be taken 
into account. An inflectional 'cross-flow' instability was found to be the dominating growth 
mechanism and good agreement with the results for the wave growth extracted from the 
numerical simulation data was obtained. 

A different approach to modelling the flow and wave field around the spot was taken by Li 
and Widnall [46] following the original idea of Widnall [47]. She assumed that the spot could 
be modelled by a region of Reynolds stress propagating with a certain speed, forcing the 
outside flow. Li and Widnall [46] argued that the non-linear forcing (RHS of Eq. la) was 
dominated by auv/ay. They modelled this term with one symmetric and one anti-symmetric 
part with respect to the channel centreline. The symmetric term gave rise to a flow blockage 
effect, but no wave field was generated. This symmetry is what would be obtained for a fully 
developed turbulent mean flow. However, for anti-symmetric forcing a wave field was 
obtained that resembled the one seen in the experiments and the simulations. 
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Fig. 5. The _+0.01UcL contour lines of normal velocity in a horizontal plane at the channel centreline at t = 258. 
Dotted lines indicate negative values and solid lines positive. From Henningson and Kim [44]. 
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Studies of turbulent spots in plane Couette flow have only recently been carried out. 
Experimental studies of transition in plane Couette flow were however carried out earlier, 
but no consensus on even the transitional Re had been reached. The first reported study of 
turbulent spots was a direct numerical simulation carried out by Lundbladh and Johansson 
[7]. They created a turbulent spot by introducing a disturbance of high amplitude and 
followed its development in time. In this way they were also able to determine whether the 
Reynolds number was below or above the transitional value. At Re = 350 the disturbance 
decayed whereas at Re = 375 it was amplified and they concluded that the transitional Re 
was somewhere in between these two values. Simulations of spots were also carried out for 
Re = 750 and Re = 1500. In their study it was shown that the flow field around the turbulent 
spot was modified. Waves at the laminar turbulent interface near the widest part of the spot 
were also observed. However, in this case the wave crests are nearly aligned with the mean 
flow direction and only one or two wave-lengths could be observed outside the spot. 

From the experimental point of view plane Couette flow is best studied in an apparatus 
with counter-moving walls. In such a set-up the net transport of fluid along the channel is 
zero and the fully developed state is reached on a diffusion determined timescale, h2/p. 
Tillmark and Alfredsson [8] constructed such an apparatus, with an infinite moving band 
acting as the walls. The moving band was transparent which made optical access to the 
channel possible for flow visualization. Using reflective flakes and a pointwise disturbance 
they measured spreading rates and propagation speeds of turbulent spots for Re up to 900. 
The transitional Reynolds number could be determined in several ways, as for instance 
running the channel at a high Re and decreasing the Re stepwise until turbulence could no 
longer be sustained in the channel. The transitional Re was in this case determined to 360. 
Also in the flow visualization, streamwise aligned waves were observed to travel out from the 
widest part of the spot. Figure 6 shows the spot shape in the xz-plane for both the 
experiment and the numerical simulation at Re = 750. 

Close to the moving walls the spot extends further in the respective directions as compared 
to the centreline (Fig. 7). Thus, as seen from the lower wall we may say that there is an 
overhang in the streamwise direction close to the upper wall. This bears resemblance to the 
situation in the boundary layer case. 

For low Reynolds numbers both the experiments and the simulations showed an increasing 
spreading rate with increasing Re. After the initial growth phase the spanwise spreading is 
larger than the streamwise and the spot tends towards a circular shape. For high Reynolds 
numbers (>700) an asymptotic spanwise spreading rate of just above 0.20 is reached. Figure 
8 shows the spanwise width of the spot as function of time for various Re in the experiments 
of Tillmark and Alfredsson [8] together with simulation data of Lundbladh and Johansson 
[7]. Both from the simulation data as well as from the experiments it is clear that the spot 
shape is not self-similar. 

From the simulation data it could be noted that the modification of the surrounding 
laminar flow is essentially two-dimensional in that it lacks a significant wall normal 
component. The magnitudes of the streamwise and spanwise deviations from the un- 
perturbed values were, on the other hand, found to be substantial. This leaves room for 
speculation about growth by destabilization also for this flow situation, but has not yet been 
investigated in detail. 
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Fig. 6. Spot shape in plane Couette flow at Re = 750 at t = 160 after spot triggering. (a) Numerical simulation, 
showing v-contour lines at the plane y = 0 (from Lundbladh and Johansson [7]). (b) Flow visualization with 
reflecting flakes (from Tillmark and Alfredsson [8]). 
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Fig. 7. Contours (-+0.02) of v in the mid x-y-plane at t = 50 and Re = 1500 (from Lundbladh and Johansson [7]). 
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Fig. 8. Spot half-width, W, as a function of time. Time origin is set where W/h = 15. Data from experiments by 
Tillmark and Alfredsson [8], (~) :  Re=438 ,  (O): Re=521 ,  (R): Re=732 ,  (+) :  R e = 9 4 3  and simulation by 
Lundbladh and Johansson [71, (e): Re = 750. 

4. Turbulence characteristics in the interior of spots 

The interior of turbulent spots exhibits a turbulence structure that is in many respects similar 
to that of the corresponding fully developed turbulent flow. This may be expected when the 
wall-parallel extent of the spot is many times larger than the wall-normal extent, and hence a 
large number of macroscales can be contained within the turbulent part of the spot. 
Wygnanski et al. [48] showed that the mean velocity profile in the boundary-layer spot 
exhibits the same kind of logarithmic behaviour as in the turbulent boundary layer, despite 
the fact that there is a slow spatial variation through the spot in quantities such as the wall 
friction. One should remember also that the Reynolds number normally is quite low in the 
interior of a spot. A friction velocity Reynolds number, R.  = Ufi/v (or U~h/v in the channel 
flow cases), may be as low as 50. 

In experimental investigations the turbulence statistics in the interior of spots are 
determined from ensemble averages of typically several hundred spot realizations. Intensities 
and higher moments are then determined from the fluctuations around the ensemble 
averages. In studies using direct numerical simulations this technique is of course not 
feasible. Flow characteristics can still be determined with a reasonable accuracy by spatial 
filtering or averaging techniques. 

In the studies of Henningson and Kim [44] and Lundbladh and Johansson [7] of Poiseuille 
flow and Couette flow spots, respectively, a spatial filter with a Gaussian hat filter function 
was used. The mean was defined by 

f I;o 1 u(x + ~, y, z + ff)f(~, ~) dE d~ (10a) (u(x, y , z ) )  7r(ab)a/2 -| 

f ( ~ ,  ~ )  = e -(g/a)2.(g/b)2 , (10b) 

or correspondingly in Fourier space 

(t~(a, y, /3))  = 3~(a,/3)~(a, y,/3).  (11) 

In the Poiseuille flow case a and b were chosen as 3.5 and 2.5, respectively, and in the 



36 D.S .  Henningson  et al. 

Couette case they were both taken as 8/7r ~-2.55. Various values of the filter length scale 
were tested, and the results were shown to be rather insensitive to the choice of this length 
scale. In the Couette case the filter function is larger than 1/e within a circle of diameter of 
approximately 5 half-heights. This is considerably smaller than the width of the analyzed 
spots, which was about 69 half-heights. Hence, also the global variations of the turbulence 
statistics within the spot can be determined with this technique. 

Turbulence intensities are determined from the simulation data by applying the Gaussian 
filter to the squared disturbance field, defined as the deviation from the spatially averaged 
velocity field, e.g. U rm s = ((U -- (U))2)1/2.  Statistics averaged over the central part of the spot 
can then be obtained either by averaging this Urm s field or by applying a Gaussian filter with 
large values of a and b to the u - (u) field. 

4.1. Turbulence  statistics in the central part  o f  the interior 

Whereas the flow in the investigated Poiseuille and Couette flow spots corresponds to very 
low friction Reynolds numbers, considerably higher R,-values have been reached in some 
studies of boundary-layer spots. In the investigation of Johansson et al. [49] detailed 
comparisons were made between the flow inside spots at R,  ~- 1000 and the fully turbulent 
boundary layer flow. A close adherence to standard turbulent boundary layer behaviour was 
shown for the statistics measured in the boundary layer spot. Also turbulence structure 
related information was investigated in the study of Johansson et al. and found to be 
practically identical to that of the turbulent boundary layer. 

Poiseuille f l o w  
The studies of Poiseuille flow spots (e.g. Carlson et al. [6], Alavyoon et al. [18], Klingmann 
and Alfredsson [42], Henningson and Kim [44]) have been carried out for Reynolds numbers 
( h U c L / v )  in the range 1000-2200. Most of the efforts have been focused for Reynolds 
numbers of 1500-1600. One should note that Nishioka and Asai [50] found self-sustained 
turbulence only for Reynolds numbers above approximately 1600. 

Klingmann and Alfredsson [42] constructed ensemble averages of the interior flow of 
Poiseuille spots from measurements with a hot-wire probe. They presented the results in 
space-like coordinates (X, Z ) =  (x / tUcL,  z / t U c L ) ,  which also enables comparison with the 
numerical simulation results of Henningson and Kim [44] where the Reynolds number was 
chosen as 1500. Figures (9a, b) show a comparison of isocontours of the streamwise mean 
velocity in the mid-plane (y = 0) as obtained from the physical and numerical experiments, 
respectively. 

Despite the low R,  of about 70 in these cases the low-speed streak spacing in the viscous 
sublayer and other features of the turbulence structure in the central part of the spot is 
similar to that of a fully developed turbulent flow. It may be noteworthy that the R,  here is 
not much larger than that of the undisturbed laminar flow (~50). The mean velocity and 
streamwise turbulence intensity from the experiments of Klingmann and Alfredsson [42] are 
shown in Fig. 10. The general behaviour and quantitative data, such as the maximum 
turbulence streamwise intensity, are close to that found in fully developed turbulent channel 
flow. Henningson and Kim also showed detailed comparisons of shear-layer structures in the 
buffer region closely resembling results for fully turbulent channel flow. 
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Fig. 9. Iso-contours of streamwise mean velocity from (a) the experiments of Klingmann and Alfredsson [42] at 
x = 195 and (b) the simulations of Henningson and Kim [44] at t = 258. 
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Fig. 10. Profiles of streamwise mean velocity and turbulence intensity from the central region of the Poiseuille spot 
(x = 195) (from Klingmann and Alfredsson [42]). 

Couette f low 
The spatially averaged velocity fields of Lundbladh and Johansson [7] for a Couet te  flow spot 
show an interesting pat tern of  the disturbance of the laminar region around the spot (Fig. 
11). Essentially no normal  velocity disturbance is present  in the laminar region so the outer  
contour  of (o )  can also be taken as the outer  edge of the spot. The higher wall friction inside 
the spot manifests itself in a weak flow towards the lower surface in the rear  half of  the 
interior,  balanced by an upward flow in the forward part.  

The  spatially averaged mean velocity profile in the central region were also shown to 
exhibit the typical s-shape of turbulent Couet te  profiles. Profiles of  the turbulence intensities 
for the central region were obtained by averaging over  a large part  of the central region of 
the spot (Fig. 12) simply through use of  a large filter length. The maximum of Urms/U ~ is 
about  2.4, and is found at y§ = 12 which is quite low in comparison with the standard value 
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Fig. 11. Spatially averaged (a) u, (b) v and (c) w at the mid-plane (y = 0) at t = 160 (normalized by half-height (h) 
and U w = half the total velocity difference between upper and lower surface (Re = h U w / u  = 750) (from Lundbladh 
and Johansson [7]). 

of about  2.8 from high Reynolds number experiments of channel and boundary layer flows. 
The v-intensity at this low Reynolds number has its maximum level at the centreline. 

The fluctuation intensities of u on the centreline are only about 20% lower than the 
maximum near the wall. For  lower Reynolds numbers it was shown to be even smaller. This 
is in contrast to e.g. high Reynolds number  turbulent channel flow, where the centreline 
u-intensity is three times smaller than the maximum near the wall (Johansson and Alfredsson 
[51]). One should note that R ,  is as low as 54 in this Couette  flow case. The low Reynolds 
number  is one reason for the high value of u,m s at the centreline and the relatively small 
difference between the centre and near wall maximum levels. A further reason is the fact 
that for Couet te  flow, in contrast to e.g. channel flow, the mean velocity gradient is non-zero 
at the centreline, giving a non-zero turbulence production there. This gives an especially 
significant effect at this low Reynolds number. 
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Fig. 12. Turbulence intensity profiles averaged over a large part of the central region of the Couette spot at t = 160 
(Re = 750) (from Lundbladh and Johansson [7]). 

4.2. Regions of enhanced turbulence intensities 

For the Couette spot the edge region close to the laminar-turbulent interface exhibits a 
considerably higher turbulence intensity than the central part (Lundbladh and Johansson 
[7]). 

The Poiseuille flow spot has a wing-tip region of enhanced activity as shown both in the 
experiments (Klingmann and Alfredsson [42]) and the simulations (Henningson and Kim 
[44]). Figure 13a shows the ensemble averaged intensity in a horizontal plane. The areas 
used to construct central part averages and wing-tip averages are enclosed by thick lines. 
Intensity profiles averaged over the central part and wing-tip region, respectively, are shown 
in Fig. 13. One may note that, in particular, the v and w components show significantly 
higher levels in the wing-tip region. This is coupled to the wave-activity in this region, as 
discussed earlier. Henningson and Kim also showed that there is a significantly larger activity 
in this region in terms of appearance of shear-layer structures in the buffer region. These 
have earlier been shown to be strongly coupled to high levels of turbulence production (see 
e.g. Johansson et al. [52]). 

S. Final remarks 

A number of investigations into the formation and development of turbulent spots in channel 
flows have been reviewed. There are three main observations that one can draw from this 
review. Firstly, the initial development is associated with the transient growth due to the 
three-dimensional lift-up effect. Secondly, the spreading and propagation velocities of the 
different spots are quite similar. Thirdly, the velocity field inside the spots show essentially 
all the characteristics of fully developed turbulent flow, albeit at low Reynolds numbers. 

The mechanism behind the rapid spreading of the spots is not yet fully understood. 
However, observations of wave activity, modifications of the surrounding flow field and 
stability calculations point in the direction of a growth by destabilization mechanism in all of 
the flow situations reviewed here. 
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Fig. 13. Turbulence intensities for the Poiseuille spot. (a) Spatially averaged streamwise intensity in the y = 0.83 
plane. (b) Profiles of u,,~,/u, (solid curve), v,ms/u, (dashed curve) and w,m,/u , (dotted curve), averaged over the 
central region (large rectangle) (c) Profiles of u,m ,lu,,  v,m s/u, and wr,~/uT, averaged over the wing-tip region (small 
rectangle) (t = 258, Re = 1500) (from Henningson and Kim [44]). 
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Notes 

Also at The Aeronautical Research Institute of Sweden (FFA), Box 11021, S-16111 Bromma, Sweden. 
2 The Reynolds-Orr equation is not valid for water table flow because of the free surface boundary condition. This 
is also why an amplitude independent Reg cannot be found for that case. 
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